
ISRAEL JOURNAL OF MATHEMATICS 12'7 (2002), 245-251 

ALGEBRAS WHICH ARE NEARLY FINITE DIMENSIONAL 
AND THEIR IDENTITIES 

BY 

DANIEL R. FARKAS 

Department of Mathematics, Virginia Polytechnic Institute and State University 
Blacksburg, VA 24061, USA 
e-mail: farkas@math.vt.edu 

AND 

L A N C E  W .  S M A L L  

Department of Mathematics, University of California at San Diego 
La Jolla, CA 92093, USA 
e-mail: lwsmaU@ucsd, edu 

ABSTRACT 

Suppose that all the nonzero one-sided or two-sided ideals of an algebra 

have finite codimension. To what extent must the algebra be p.i. or 

primitive? 

Introduct ion  

Finite-dimensional algebras are regarded as all but trivial examples of polynomial 

identity algebras. In this note, we examine algebras which just miss being finite 

dimensional in the sense that  many of their nonzero one-sided or two-sided ideals 

have finite codimension. The vague goal is to prove that such algebras still 

satisfy a polynomial identity. Short of that,  we wish to establish some sort of 

"alternative" for those algebras which are also semiprimitive, e.g., they must be 

either p.i. or primitive. 

We apply this philosophy in providing a new proof of part of the Small-Warfield 

Theorem [SW] describing prime affine algebras with Gelfand-Kirillov dimension 
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one. An "alternative" for affine algebras over an uncountable scalar field is also 

presented in Theorem 2.2. 

This exploration arose from stimulating discussions the first author had with 

Ed Letzter, for which he is very grateful. The significance of the main lemma 

became clear when the two authors played with it at  MSRI, under the auspices 

of the special year for noncommutative algebra 1999-2000. 

1. Creating polynomial identities 

We shall describe how polynomial identities arise for algebras with sufficiently 

many left ideals of finite codimension. Let R be a k-algebra where k is a field. 

Denote by Tn(R) the set of all specializations in R by all polynomial identities 

of n x n matrices over k. Obviously, T~(R) is an ideal of R and R/Tn(R) is a p.i. 

algebra. 

LEMMA 1.1: Assume R is a k-algebra and n is a positive integer. Ira • R is 
such that 

dimk R/Ra = n, 

then Tn(R) C_ Nd Rad" 

Proof'. Pull back a basis for R/Ra  to a set v l , . . . , v n  in R. We may assume 

vl = 1. A routine induction shows that  if s E R and d is a natural number then 

we may write 

s - vlpl(a) + " "  + VnPn(a) (mod Ra ~+1) 

where pj(a) E k[a] has formal degree at most d as a polynomial in a. For the 

time being, we fix d. First apply the formula to s = rvj for an arbi trary r E R, 
thereby constructing the essence of the left regular representation modulo Ra d+l. 
Then we are writing 

rvj = E virij + fj(r)a d+l 
i 

with rij E k[a] and fj(r) • R. If  t • R then 

t(rvj) = E tvirij + tfj(r)a d+l 
i 

= E Vmtmirij + E fi(t)ad+lr~J + tfj(r)ad+l" 
rn, i  i 

Notice that  the middle term lies in Ra d+l because rij • k[a] and polynomials in 

the symbol a commute. 
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We reinterpret the last equation using matr ix  notation: write Jr] = (rij), etc. 

All of the matrices which appear will be n × n matrices with entries in k[a]. (We 

stress that  n is independent of d.) We have 

( t r ) - ( v l , . . . , v n )  --- (v l , . . . ,v~)[ t ] [ r ]  (mod Rad+l) .  

Here the dot refers to "scalar multiplication" for R acting on the R-module R n 

and on the right-hand side of the congruence we have the product of a row vector 

with the product of two matrices. 

The congruence can be extended to arbitrarily long products. In other words, 

if F is a noncommutat ive polynomial in t variables and r ( 1 ) , . . . ,  r (~) C R then 

g ( r ( 1 ) , . . . , r ( t ) )  " ( v l , . . . , V n ) - -  (vl , . . . ,vn)V([r(1)] , . . . [ r (~)])  

modulo R a  d+l. In particular, if F is a polynomial identity for n × n matrices 

(i.e., for n × n matrices over k[a]) then 

F( r (1) , . . . , r (~) )  " ( v l , . . . , v n ) - - - 0  ( m o d R a  d+l) 

for all specializations. 

Since vl = 1, attention to the first coordinate tells us that  

F ( r (1 ) , . . . ,  r (e)) C Ra d+l. 

Equivalently, 

T~(R) C_ Ra d+l. 

Let d vary. | 

We shall take advantage of the conclusion of Lemma 1.1 by means of the next 

elementary lemma. 

LEMMA 1.2: A s s u m e  R is a k-algebra. I ra  C R is regular and n d  R a  d has finite 

codimension in R then a is invertible. 

Proof'. The chain 
R a  D_ Ra  2 D_ Ra  s ~_ . . .  

must eventually be stationary. Thus a t E R a  t+l for some positive integer t. It  

follows that  a has a left inverse. Regularity of a implies that  this left inverse is 

also a right inverse. | 

The Small-Warfield Theorem asserts that  a prime affine algebra of 

GK-dimension one satisfies a polynomial identity. The first half of their ar- 

gument is devoted to proving that  the hypotheses on the algebra force it to be 

Goldie. We offer an alternative approach to the completion of the argument. 
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LEMMA 1.3: Assume R is a prime Goldie k-algebra of GK-dimension one. Then 

either R is simple artinian or it satisfies all polynomial identities of n x n matrices 

for some n. 

Proof." If every regular element in R is invertible then Goldie's Theorem states 

that R is simple artinian. So we may suppose that R contains some regular 

element a which is not invertible. 

We shall invoke the following observation twice: if L is a left ideal of R 

which contains a regular element then the GK-dimension of R / L  is zero, i.e., 

dimk R / L  < co. (See [McR], 8.35.) 

First take L = Ra. According to Lemma 1.1, 

T , ( R )  C_ N R a n .  
d 

We are clearly done when T,~(R) = O. Otherwise, T,~(R) is a nonzero two-sided 

ideal. As such it must contain a regular element because R is prime Goldie. This 

time use L = ~ Ra d to conclude that the intersection has finite codimension in 

R. Lemma 1.2 now implies that a is invertible, a contradiction. | 

Observe that if k is an uncountable, algebraically closed field then the punch- 

line of the Small-Warfield Theorem follows immediately from the lemma. How- 

ever, we can always reduce to this case. Let K be an uncountable, algebraically 

closed extension field of k. Use Zorn's Lemma to find an ideal I of K ®k R 

maximal with respect to I N R = 0. The primality of R forces I to be a prime 

ideal of K ® R. 

It is easy to see that if R has GK-dimension one as a k-algebra then K ® R has 

GK-dimension one as a K-algebra. All the more so, ( K ® R ) / I  has GK-dimension 

one. The first part of Small-Warfield (which we are assuming to be true) plus 

Lemma 3.1 say that (K ® R ) / I  satisfies a standard identity. Since R imbeds in 

(K  ® R ) / I ,  it, too, satisfies a standard identity. 

We turn next to the cheapest way to guarantee the presence of many left ideals 

with finite codimension. 

PROPOSITION 1.1: Assume that R is a k-algebra such that every nonzero left 

ideal has finite codimension in R. Then either R is finite dimensional over k, a 

division algebra, or a domain module-finite over its center. 

Proof'. We will assume that R is not finite dimensional over k. Then R must 

be an integral domain. Indeed, if a ¢ 0 is in R then R / R a  is finite dimensional; 
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thus Ra is infinite dimensional over k. But 

Ra ~_ R/lannR(a).  

Hence the left annihilator of a is zero. 

Suppose, in addition, that  R is not a division algebra. Then R has a regular 

element which is not invertible. Lemmas 1.1 and 1.2 imply that  Tn(R) = O. 

Therefore R satisfies a polynomial identity. 

We claim that  the center Z of R is noetherian. If 0 ~ w E Z then w R  n Z = 

w Z  because w is regular. It follows that all nonzero ideals of Z have finite 

codimension in Z. In particular, Z is noetherian. The proposition is completed 

by invoking Formanek's module finiteness theorem (see [McR], 13.6.11). | 

Note that  if k is algebraically closed and R is an affine k-algebra then Tsen's 

Theorem ([G]) allows us to replace the third alternative with "R is a commutative 

affine domain of Krull dimension one". 

It may be argued that  the proposition is a pleasing characterization with the 

wrong hypothesis. There is evidence from the study of pathological infinite groups 

that  it is more natural to restrict finite codimension to two-sided ideals only. 

Definition: An infinite dimensional k-algebra R is j u s t  in f in i te  d i m e n s i o n a l  

provided that every nonzero two-sided ideal has finite codimension in R. 

2. J u s t  inf in i te  d i m e n s i o n a l  a lgeb ras  

There is a very small literature on just infinite dimensional algebras: IS], [PT], 

IV]. We begin our advertisement for this subject with a particularly simple proof 

of the main result in IF]. 

LEMMA 2.1 (Small [PT]): Let R be an affine k-algebra which is not finite di- 

mensional. Then R has a prime ideal I such that R / I  is just  infinite dimensional. 

As a consequence, just infinite dimensional affine algebras are prime. 

THEOaEM 2.1 (IF]): An arlene polynomial identity algebra for which every finite- 

dimensional module is semisimple must be a finite-dimensional algebra. 

Proof: If there is an infinite-dimensional counterexample then there is an 

example R which is just infinite dimensional by the lemma. We claim that the 

center of R is a field. Certainly every nonzero element of the center is regular, as 

argued in Proposition 1.1. If z is such an element which is not invertible then Rz  2 

is a proper nonzero ideal of R. Hence R / R z  2 is a finite-dimensional semisimple 
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k-algebra. But the image of z lies in its radical! It  follows that  z C R z  2, so z is 

invertible after all. 

According to Rowen's Theorem, every nonzero ideal of a prime p.i. algebra 

nontrivially meets the center. Thus R is simple. By Kaplansky's  Theorem, R 

is finite dimensional over its center. The Artin Tare Lemma ([McR], 13.9.10) 

implies that  the center is affine over k. Finally, the classical Nullstellensatz says 

that  the center is a finite field extension of k. | 

The examples in [S] and [V] strongly suggest an "alternative" theorem for affine 

semiprimitive just infinite dimensional algebras: either they are primitive or they 

satisfy a p.i. We offer a proof valid over large scalar fields. 

THEOREM 2.2: Assume that k is an uncountable field. I f  R is an affine, semi- 

primitive, just  infinite dimensional k-algebra then either R is (left) primitive or 

R satisfies a polynomial identity. 

Proof'. Suppose that  neither conclusion holds. Then each primitive ideal of 

R has finite codimension. We first show that  there are only countably many 

primitive ideals. The point is that  for each positive integer n there are only 

finitely many primitive ideals with codimension n; otherwise, their intersection 

will be zero, whence R satisfies a polynomial identity of degree n 2 ~ 1. 

Fix a C R. If P is a primitive ideal of R then R / P  is a finite-dimensional simple 

algebra. Hence the image of a - A. 1 in R / P  is invertible for all but finitely many 

E k. Using the previous paragraph, we see that  there is a countable subset 

C C k such that  a - A • 1 is invertible modulo every primitive ideal whenever 

~¢c .  
We shall prove that  if A ~ C then a - A. 1 itself has a left inverse in R. Suppose 

not. Then R(a - A. 1) lies in some maximal left ideal M .  If P is the annihilator 

of R I M  then P is primitive. Consequently, the image of a - A. 1 in R / P  lies in 

a maximal ideal of R / P ,  contradicting its invertibility modulo P.  

We have proved that  a - A. 1 has a left inverse for uncountably many scalars 

A. Amitsur 's  linear independence trick implies that  a is algebraic over k. Sum- 

marizing, R is an algebraic algebra over k. Since R is semiprimitive, it has no 

nonzero nil left ideals. Hence every nonzero left ideal of R contains a nontrivial 

idempotent. 

We reach the final contradiction that  R is primitive or p.i. via a Baire Category 

argument due to Jacobson. The relevant version is the elegant formulation in 

[FS]. Assume that  R is any prime ring with the property that  every nonzero left 

ideal has a nontrivial idempotent. Their theorem states that  if there exists a 
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countable collection of nonzero two-sided ideals such that every nonzero ideal 

of R contains an ideal in the collection, then R is primitive. In our case, the 

countable sequence of distinguished ideals are the Tn(R). If one of them is zero 

then R satisfies a p.i. If none are zero, then this collection is suitable because 

each nonzero ideal of R has finite codimension. | 

A similar argument (which does not require Baire Category) has been used by 

the second author to prove (unpublished) that if R is a prime, affine, noethe- 

rian, C-algebra of Krull dimension 1 then either R is primitive or R satisfies a 

polynomial identity. 

The hypothesis of semiprimitivity for Theorem 2.2 is necessary. Let S be a 

Golod-Shafarevich example, a finitely generated nil algebra which is not nilpo- 

tent. Zorn's Lemma produces an ideal J maximal with respect to S / J  not being 

nilpotent because the inclusion of S m in an ideal can be determined by testing 

products of m generators. It is immediate that S / J  with 1 adjoined is just infinite 

dimensional. Finitely generated nil algebras which satisfy a polynomial identity 

are nilpotent, so the algebra we have constructed satisfies no identity. 
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